552 research outputs found

    Minding the gap(s): public perceptions of AI and socio-technical imaginaries

    Get PDF
    Deepening and digging into the social side of AI is a novel but emerging requirement within the AI community. Future research should invest in an “AI for people”, going beyond the undoubtedly much-needed efforts into ethics, explainability and responsible AI. The article addresses this challenge by problematizing the discussion around AI shifting the attention to individuals and their awareness, knowledge and emotional response to AI. First, we outline our main argument relative to the need for a socio-technical perspective in the study of AI social implications. Then, we illustrate the main existing narratives of hopes and fears associated with AI and robots. As building blocks of broader “sociotechnical imaginaries”, narratives are powerful tools that shape how society sees, interprets and organizes technology. An original empirical study within the University of Bologna collects the data to examine the levels of awareness, knowledge and emotional response towards AI, revealing interesting insights to be carried on in future research. Replete with exaggerations, both utopian and dystopian narratives are analysed with respect to some relevant socio-demographic variables (gender, generation and competence). Lastly, focusing on two issues – the state of AI anxiety and the point of view of non-experts – opens the floor to problematizing the discourse around AI, sustaining the need for a sociological perspective in the field of AI and discussing future comparative research

    Risk Management using Model Predictive Control

    Get PDF
    Forward planning and risk management are crucial for the success of any system or business dealing with the uncertainties of the real world. Previous approaches have largely assumed that the future will be similar to the past, or used simple forecasting techniques based on ad-hoc models. Improving solutions requires better projection of future events, and necessitates robust forward planning techniques that consider forecasting inaccuracies. This work advocates risk management through optimal control theory, and proposes several techniques to combine it with time-series forecasting. Focusing on applications in foreign exchange (FX) and battery energy storage systems (BESS), the contributions of this thesis are three-fold. First, a short-term risk management system for FX dealers is formulated as a stochastic model predictive control (SMPC) problem in which the optimal risk-cost profiles are obtained through dynamic control of the dealers’ positions on the spot market. Second, grammatical evolution (GE) is used to automate non-linear time-series model selection, validation, and forecasting. Third, a novel measure for evaluating forecasting models, as a part of the predictive model in finite horizon optimal control applications, is proposed. Using both synthetic and historical data, the proposed techniques were validated and benchmarked. It was shown that the stochastic FX risk management system exhibits better risk management on a risk-cost Pareto frontier compared to rule-based hedging strategies, with up to 44.7% lower cost for the same level of risk. Similarly, for a real-world BESS application, it was demonstrated that the GE optimised forecasting models outperformed other prediction models by at least 9%, improving the overall peak shaving capacity of the system to 57.6%

    Metabolomics and Lipidomics Profiling of a Combined Mitochondrial Plus Endoplasmic Reticulum Fraction of Human Fibroblasts: A Robust Tool for Clinical Studies

    Get PDF
    Mitochondria and endoplasmic reticulum (ER) are physically and functionally connected. This close interaction, via mitochondria-associated membranes, is increasingly explored and supports the importance of studying these two organelles as a whole. Metabolomics and lipidomics are powerful approaches for the exploration of metabolic pathways that may be useful to provide deeper information on these organelles\u27 functions, dysfunctions, and interactions. We developed a quick and simple experimental procedure for the purification of a mitochondria-ER fraction from human fibroblasts. We applied combined metabolomics and lipidomics analyses by mass spectrometry with excellent reproducibility. Seventy-two metabolites and 418 complex lipids were detected with a mean coefficient of variation around 12%, among which many were specific to the mitochondrial metabolism. Thus this strategy based on robust mitochondria-ER extraction and "omics" combination will be useful for investigating the pathophysiology of complex diseases

    Teaching NeuroImages: The Charcot shoulder Chiari malformation with syringomyelia associated with arthropathy

    Get PDF
    Univ Fed Sao Paulo, Dept Neurol & Neurosurg, Sao Paulo, BrazilUniv Fed Sao Paulo, Dept Orthoped & Traumatol, Sao Paulo, BrazilUniv Fed Sao Paulo, Dept Neurol & Neurosurg, Sao Paulo, BrazilUniv Fed Sao Paulo, Dept Orthoped & Traumatol, Sao Paulo, BrazilWeb of Scienc

    Modelagem computacional do crescimento de cana-de-açúcar para predição de produtividade potencial.

    Get PDF
    Resumo- Neste artigo é apresentado um modelo ecofisiológico-matemático (BrCane) para predizer a produtividade potencial - sem restrições nutricionais ou de água -, a fim de analisar a sustentabilidade da expansão do cultivo de cana-de-açúcar em novas áreas para produção de etanol. A arquitetura do modelo BRCANE foi concebida para uma planta tipo C4, onde a evolução mensal da biomassa foi estimada em função da temperatura do ar e da radiação incidente. Nas simulações apresentadas a produção de biomassa levou em conta a taxa bruta de fotossíntese subtraídas as perdas para respiração de manutenção, senescência de folhas e morte de perfilhos durante o ciclo da cultura. O modelo BRCANE também foi usado para descrever o comportamento fisiológico em função das condições ambientais relacionadas ao tempo termal. A implementação de tais condições permitiu ajustar os resultados das simulações a resultados experimentais disponíveis na literatura. As estimativas de biomassa foram comparadas com dados obtidos durante o ciclo da cultura em experimentos de campo com irrigação (Cultivares RB72 454, NA 56-79, CB 41-76, CB47-355, CP51-22, Q138 e Q141) no Estado de São Paulo (Brasil) e em Bundaberg e Queensland (Austrália) e os resultados foram expressos em toneladas de colmo por hectare (Mg.ha-1), por meio de uma relação linear para cada variedade (R2 = 0,88). O modelo apresentou resultados consistentes com dados experimetais para crescimento de biomassa no ciclo da cultura da cana-de-açúcar.bitstream/item/65018/1/boletim31.pd

    Alloxan-induced diabetes delays repair in a rat model of closed tibial fracture

    Get PDF
    A closed fracture was performed on the left tibia of 3-month-old Wistar rats weighing 250 to 350 g that were either healthy (N = 24) or made diabetic with alloxan (N = 24) to investigate the effect of alloxan-induced diabetes on the course of bone fracture healing. Histomorphometric analysis of the fracture site was performed at 7, 14, 25, and 35 days. After 7 days, diabetic rats had significantly less cartilage (P = 0.045) and greater fibrous connective (P = 0.006) tissue formation at the fracture site compared to controls. In contrast, marked callus formation was seen in diabetic rats with significant osteogenesis (P = 0.011, P = 0.010, P = 0.010, respectively, for 14, 25, and 35 days) and chondrogenesis (P = 0.028, P = 0.033, P = 0.019) compared to controls. Radiographic analysis revealed a displaced fracture with poor bone fragment alignment and delayed consolidation at these times in the diabetic group. The levels of alkaline phosphatase were significantly higher in diabetic rats at 25 days (P = 0.009). These results suggest that the initial excessive formation of fibrous connective tissue associated with delay in chondrogenesis and osteogenesis may not provide suitable stability of the fractured site, contributing to the inappropriate alignment of fragments and an increase in the volume of callus in later stages of repair. The resulting displaced fracture in diabetic rats requires long periods for remodeling and complete bone consolidation

    The role of T cell subsets and cytokines in the regulation of intracellular bacterial infection

    Get PDF
    Cellular immune responses are a critical part of the host's defense against intracellular bacterial infections. Immunity to Brucella abortus crucially depends on antigen-specific T cell-mediated activation of macrophages, which are the major effectors of cell-mediated killing of this organism. T lymphocytes that proliferate in response to B. abortus were characterized for phenotype and cytokine activity. Human, murine, and bovine T lymphocytes exhibited a type 1 cytokine profile, suggesting an analogous immune response in these different hosts. In vivo protection afforded by a particular cell type is dependent on the antigen presented and the mechanism of antigen presentation. Studies using MHC class I and class II knockout mice infected with B. abortus have demonstrated that protective immunity to brucellosis is especially dependent on CD8+ T cells. To target MHC class I presentation we transfected ex vivo a murine macrophage cell line with B. abortus genes and adoptively transferred them to BALB/c mice. These transgenic macrophage clones induced partial protection in mice against experimental brucellosis. Knowing the cells required for protection, vaccines can be designed to activate the protective T cell subset. Lastly, as a new strategy for priming a specific class I-restricted T cell response in vivo, we used genetic immunization by particle bombardment-mediated gene transfer

    Human biomonitoring health surveillance for metals near a waste-to-energy incinerator: The 1-year post-operam study

    Get PDF
    This human biomonitoring (HBM) follow-up survey, within the SPoTT project, assessed the temporal and spatial trends of exposure to 18 metals in a cohort living around the waste-to-energy (WTE) incinerator of Turin (Italy) before (T0, 2013) and after 1-year of plant activity (T1, 2014). Urine of 380 adult individuals (186 exposed and 194 unexposed subjects, classified on fallout maps) were analyzed by sector field inductively coupled mass spectrometry. A decrease trend of the majority of metals in all subjects indicates that the overall air quality of the studied sites was not significantly compromised, also in proximity of the WTE plant, as corroborated also by air monitoring data of the regional agency. The only relevant exception was the higher Cr levels found at T1 than T0 in exposed subjects, suggesting a possible contribution from the WTE plant. Chromium, Mn and Pt urine levels were also higher in the site far from the WTE, in relation to other sources as vehicular traffic, industrial and civil activities. Whilst, As and Cd were influenced by fish intake and tobacco smoke. A very small number of individuals at T1, equally distributed in both areas, exceeded the health-based guidance values and so, at current knowledge, living near the Turin incineration did not significantly influence the exposure status of the population
    corecore